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Abstract—We propose a variational inference-based channel
estimation method in fully passive reconfigurable intelligent
surface (RIS)-aided mmWave single-user single-input multiple-
output (SIMO) communication systems. The main goal is to
jointly estimate the user equipment (UE)-to-RIS (UE-RIS) and
RIS-to-base station (RIS-BS) channels using uplink training sig-
nals in a passive RIS setup. Specifically, by using a variational in-
ference framework, we approximate the posterior of the channels
with convenient distributions given the received uplink training
signals. The parameters of the approximated distributions are
generated by deep neural networks trained using variational loss
functions derived using a lower bound on the log-likelihood of
the received signal. Then, the learned distributions, which are
close to the true posterior distributions in terms of Kullback
Leibler divergence, are leveraged to obtain the maximum a
posteriori (MAP) estimation of the UE-RIS and RIS-BS channels.
We evaluate the proposed channel estimation solution under two
channel priors. The first channel prior models Rayleigh fading
channels with Gaussian prior, whereas the second one represents
sparse channels in the angular domain with Laplace prior. The
simulation results demonstrate that MAP channel estimates using
the approximated posteriors yield a capacity which is close to
the one achieved with the true posteriors, thus demonstrating
the effectiveness of the proposed method.

Index Terms—Reconfigurable Intelligent Surface (RIS), chan-
nel estimation, Variational Inference (VI), mmWave communica-
tions

I. INTRODUCTION

MILLIMETER-WAVE (mmWave) communication is one of
the emerging technologies for 5G/6G communication

systems and beyond to meet the high data rate and spectral ef-
ficiency requirements [1]. Although mmWave communications
offer a significant gain in throughput thanks to the increased
available bandwidth, they are more susceptible to blockages
due to rapid signal attenuation and severe path losses. In
this context, reconfigurable intelligent surfaces (RISs) have
been proposed to mitigate the challenges in mmWave com-
munication systems and also enable smart and reconfigurable
wireless environments [2] [3]. An RIS is a two-dimensional
(2D) array consisting of a large number of passive or semi-
passive low-cost reflecting elements that redirect the impinging
electromagnetic waves following a specific phase shift pattern
[4] [5]. To achieve the desired performance (e.g. high spectral
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efficiency, energy efficiency) through passive and active beam-
forming, it is crucial to have the channel state information
(CSI) between the base station (BS) and the RIS and between
the RIS and the receiver [6], [7].

Channel estimation in RIS-aided systems has been exten-
sively investigated in the literature along with the reflec-
tion optimization. For instance, a compressed sensing-based
method was proposed to solve the channel estimation problem
in a single-user narrowband setup that exploits the mmWave
sparse channels [8]. Based on the low-rank structure of the
mmWave communication of the RIS-BS and UE-RIS channels
that comes from the large number of elements in the RIS,
a non-iterative channel estimation framework can be adopted
through the estimation of the directions of departure (DODs)
of the BS-RIS paths and the directions of arrival (DOAs) of the
UEs-RIS paths in a first stage, then the cascaded BS-RIS-UE
channel can be directly computed using the estimated DODs
and DOAs [9]. To reduce the training overhead triggered by
the large large dimension of the channels, a semi-passive setup
of the RIS where the RIS includes a small number of active
sensing elements is used to estimate the UE-RIS and the
RIS-BS channels in a first coherence block. And using the
property of static channel for the RIS-BS channels (since the
RIS and BS are in fixed positions), only the UE-RIS channel
is estimated in the training time of the subsequent coherence
blocks [10]. In the same context of semi-passive RISs, a vari-
ational inference (VI)-based method was developed to reduce
the training overhead and estimate the channels using only
the uplink training signals, unlike previous works where they
require the downlink and uplink signals for channel estimation
[11]. Furthermore, the decomposition of the cascaded UE-RIS-
BS channel into two separate channels, i.e. UE-RIS and RIS-
BS channels, has been studied in RIS-aided systems with fully
passive RIS. For instance, it was shown that the received signal
follows the parallel factor tensor model [12] which is used
to develop channel estimation methods based on Khatri-Rao
factorization of the cascaded channel and iterative alternating
estimation scheme.

In this paper, we propose a joint channel estimation al-
gorithm based on VI [13], [14] for RIS-aided single-user
single-input multiple-output (SIMO) systems with fully pas-
sive elements to separately estimate the UE-RIS and RIS-BS
channels. More specifically, we estimate the channels based
on the uplink training signals using maximum a posteriori
(MAP) estimation where we approximate the true posterior



of the channels based on convenient prior distributions. We
consider two families of channel distribution: (i) complex
Gaussian priors for Rayleigh fading channels, and (ii) complex
Laplace priors to exploit the sparse structure in the angular
domain in mmWave communication. Using the mean-field
approximation [13], the VI-based framework enables the joint
estimation of the RIS-BS and UE-RIS channels. In contrast
to the aforementioned works (e.g. [11], [12]), we use VI-
based unsupervised learning to solve the joint estimation
of the UE-RIS and RIS-BS channels using only the uplink
training signals in a fully passive RIS setup. Our solution
is flexible and takes into account the sparsity of mmWave
channels. The proposed algorithm can also be extended to
other types of channels. The simulation results show the
effectiveness of the proposed approach in terms of the capacity
of the UE-RIS-BS link and the performance improvement with
sparse channels compared to channels with Gaussian priors.

Notations: Scalars, vectors and matrices are denoted x, x and
X , respectively. X∗ and XH denote the complex conjugate
and conjugate transpose of X . The i-th element of a vector
a is [a]i, while the (i, j)-th element of a matrix A is [A]i,j .
The n×n identity matrix is written as In. The diag(a) is the
diagonal matrix with the elements of the vector a on the main
diagonal. The element-wise product of X and Y is written as
X ⊙ Y . Tr(X) and |X| represent the trace and determinant
of the matrix X , respectively, and |x| represent the absolute
value of a complex number x. The notation vec(A) denotes
the vectorization of matrix A. The complex Gaussian random
vector is denoted x ∼ CN (m,Σ) with mean m and covari-
ance matrix Σ, whereas a complex Laplace random variable x
is denoted x ∼ CL(m, b) with mean m, scale b and probability
density function (PDF) p(x) = (1/(2πb2)) exp(−|x−m|/b).

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an RIS-assisted single-user communication
system with M antennas at the BS, N passive reflecting
elements at the RIS and a single-antenna user. Considering
uplink transmission, the UE-RIS and RIS-BS channels are
denoted by h ∈ CN and G ∈ CM×N , respectively. We ignore
the direct UE-BS link considering that it can be estimated
using the conventional SIMO channel estimation methods by
turning off the RIS. Furthermore, we adopt a block-fading
channel model with a coherence time T . Hence, the received
signal at the BS at the t-th time slot can be expressed as
follows:

y[t] =
√
ρ G diag

(
v[t]

)
h x[t] +w[t], t = 1, . . . , T, (1)

where ρ, x ∈ C and w ∈ CM are, respectively, the transmis-
sion power, the transmitted signal and the additive white noise
with σ2

w being the noise power, i.e. w[t] ∼ CN (0, σ2
wIM ).

The phase shifts contributed by the RIS are represented by
the diagonal matrix diag(v), where v = [ejθ1 , . . . , ejθN ] with
θn ∈ [0, 2π) is the phase shift of the n-th element in the RIS.

In order to jointly estimate the UE-RIS channel h and the
RIS-BS channel G, a pilot sequence is sent by the user to

the BS through the UE-RIS-BS link. Different phase shifts
are considered for each pilot signal. By sending L < T pilot
signals denoted x ∈ CL, the received pilot signal is given by:

Y =
√
ρ G

(
V ⊙ (hxT )

)
+ W , (2)

where Y =
[
y[1], . . . ,y[L]

]
∈ CM×L is the concatenation of

the received signals, x =
[
x[1], . . . , x[L]

]T
the pilot signal,

V =
[
v[1], . . . ,v[L]

]
is composed of the phase shift vectors

with v[l] is assigned to the l-th pilot signal x[l], and W =[
w[1], . . . ,w[L]

]
.

The channels h and G can be computed using the MAP es-
timation by maximizing the posterior distribution conditioned
on the observations Y :

ĥ, Ĝ = argmax
h,G

p(h,G|Y ). (3)

However, the true posterior distribution of the channels
p(G,h|Y ) is intractable. Therefore, we aim to approximate
the true posterior distribution p using tractable distributions
based on the VI framework. In the next section, we will
introduce the necessary background on VI and detail the
proposed joint channel estimation algorithm.

III. JOINT CHANNEL ESTIMATION VIA VARIATIONAL
INFERENCE

A. Variational Inference

The variational methods are a class of systematic approaches
that approximate complex and intractable probability distribu-
tions with convenient tractable ones. VI is a specific case of
variational methods that infers the marginal distributions or
likelihood functions of hidden variables in a statistical model
[13] [15].

Applied to the joint channel estimation problem described in
Section II, our aim is to approximate the intractable posterior
p(h,G|Y ) by a tractable distribution q(h,G|Y ) where the
channels G and h determine the received pilot signals Y , i.e.
the observations. To do so, we start by expressing the log-
likelihood function of Y :

log p(Y ) =

∫
h,G

q(h,G|Y ) · log p(Y ) dh dG

=

∫
h,G

q(h,G|Y ) log

[
p(h,G,Y )

q(h,G|Y )
· q(h,G|Y )

p(h,G|Y )

]
dh dG

= Eh,G∼q(h,G|Y )

[
log

p(h,G,Y )

q(h,G|Y )

]
+ Eh,G∼q(h,G|Y )

[
log

q(h,G|Y )

p(h,G|Y )

]
.︸ ︷︷ ︸

Kullback-Leibler divergence

(4)

The second term in Eq. 4 is the Kullback-Leibler (KL) divergence
DKL

(
q(h,G|Y )||p(h,G|Y )

)
which is a statistical distance in the

distribution space that measures how close the approximated distribu-
tion q(h,G|Y ) to the exact posterior p(h,G|Y ). The minimization
of the KL divergence yields a better approximation of the exact
posterior, thus we can derive the estimated channels using the approx-
imated distribution q(h,G|Y ). However, the KL-divergence cannot
be derived directly since the PDF of the posterior is intractable. Thus,
a lower bound, also named Evidence Lower Bound (ELBO), on the



log-likelihood of the observations can be derived given that the KL-
divergence is a non-negative term:

log p(Y ) ≥ Eh,G∼q(h,G|Y )

[
log

p(h,G,Y )

q(h,G|Y )

]
≜ −L(Y ; q). (5)

Given that log p(Y ) in Eq. 4 is an unknown constant, maximizing
the ELBO −L(Y ; q) is equivalent to minimizing the KL divergence,
which solves the approximation problem of the posterior p(h,G|Y ).
Assuming that q(h,G|Y ) belongs to a family of tractable distribu-
tions defined by a set of parameters λ, the VI approach consists
in optimizing the parameters λ of the approximated distribution
q(h,G|Y ) that minimizes the objective function L(Y ;λ).

We further assume that the approximated distribution can be
factorized as q(h,G|Y ) = q(h|Y ) · q(G|Y ) and we optimize
the independent distributions by minimizing L(Y ;λG, λh), which is
written as L(q) for ease of notation. This independence assumption
is referred to as the mean-field approximation [15]. It is equivalent
to assuming a low correlation between the channels G and h
conditioned on Y . Hence, the objective function is simplified to a
general form given by:

L(q) = Eh,G∼q(h,G|Y )

[
log

q(h,G|Y )

p(h,G,Y )

]
= Eh∼q(h|Y )

[
log

q(h|Y )

p(h)

]
︸ ︷︷ ︸

L1

+EG∼q(G|Y )

[
log

q(G|Y )

p(G)

]
︸ ︷︷ ︸

L2

−Eh,G∼q(h,G|Y )

[
log p(Y |h,G)

]︸ ︷︷ ︸
L3

. (6)

We obtain the parameters of the two variational distributions q(G|Y )
and q(h|Y ) by two trainable neural networks denoted by Encoder 1
and Encoder 2, as shown in Fig. 1. In particular, given the received
pilot signal Y as an input, the neural networks predict the statistical
parameters of the distributions q(G|Y ) and q(h|Y ).
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Fig. 1: Joint channel estimation framework structure.

Note that L1 and L2 in Eq. 6 represent the KL divergence between
the variational distributions q(h|Y ) and q(G|Y ) returned by the
neural networks and their actual priors p(h) and p(G), respectively.
Regarding L3, it corresponds to the reconstruction error of the
estimated pilot signal Ŷ with the variational distributions q(G|Y )
and q(h|Y ). Hence, minimizing the objective function L(q) =
L1 + L2 + L3 ensures that the generated posterior distributions are
close to the prior distributions and the reconstructed signal Ŷ is
similar to the received signal.

Deriving the ELBO is the first step in a VI-based algorithm
design. The next step focuses on the choice of the approximating
distribution family. In what follows, we study two cases: the first
one uses complex Gaussian priors for Rayleigh fading channels; and
the second one assumes a complex Laplace distribution in the angular
domain.

B. Channel Estimation With Complex Gaussian Priors
In order to derive an explicit expression of the objective function

in Eq. 6, we consider the Rayleigh fading channel for G and h
where the elements of the channels are independent and identi-
cally distributed (i.i.d.) with variances σ2

G and σ2
h, respectively, i.e.

p
(
[G]i,j

)
∼ CN (0, σ2

G) and p
(
[h]i

)
∼ CN (0, σ2

h).
Additionally, the approximated posterior distributions q(G|Y ) and

q(h|Y ) are assumed to be Gaussian distributions parameterized
with means MG and mh and variances ΓG and γh, respectively.
Assuming that the channel elements are independent in the variational
distributions, we have q

(
[G]i,j |Y

)
∼ CN

(
[MG]i,j , [ΓG]i,j

)
and

q
(
[h]i|Y

)
∼ CN

(
[mh]i, [γh]i

)
where the means MG and mh

and the variances ΓG and γh are predicted by the neural networks
Encoder 1 and Encoder 2, respectively, given the pilot signals Y
(Fig. 1).

We recall that L1 has a closed-form expression since it is the KL
divergence between two Gaussian distributions p(h) and q(h|Y ):

L1 = Eh∼q(h|Y )

[
log

q(h|Y )

p(h)

]
=

1

σ2
h

(
tr
(
diag(γh)

)
+mH

h mh

)
− log

∣∣∣diag(γh)
∣∣∣

+N log σ2
h −N

=
1

σ2
h

N∑
i=1

[γh]i +
mH

h mh

σ2
h

−
N∑
i=1

log[γh]i +N log σ2
h −N.

(7)

Similarly, we derive the closed-form expression of L2 as follows:

L2 = EG∼q(G|Y )

[
log

q(G|Y )

p(G)

]
=

1

σ2
G

M∑
i=1

N∑
j=1

[ΓG]i,j +
vec(MG)Hvec(MG)

σ2
G

−
M∑
i=1

N∑
j=1

log[ΓG]i,j +NM log σ2
G −NM.

(8)

Regarding the reconstruction loss L3, we note that p(Y |G,h) =∏L
l=1 p(yl|G,h) where yl is the l-th received pilot signal

p(yl|G,h) ∼ CN (
√
ρ G diag(vl) h xl, σ2

wIM ) due to the
independent realizations of the noise for each transmission of the
pilot signal xl. To derive the expression of L3, we apply the
expectation over h in a first step and obtain a closed-form expression,
then we use the property E[GHG] = diag(τ ) + MH

GMG where
diag(τ ) represents the covariance matrix of the columns of G and
[τ ]i =

∑M
m=1[ΓG]m,i to compute the expectation over G:

L3 = −Eh,G∼q(h,G|Y )

[
log p(Y |h,G)

]
=

1

σ2
w

[
ρ||x||2tr

(
diag(τ ) diag(γh)

)
+ρ||x||2mH

h diag(τ )mh

+ ρ||x||2tr
(
MH

GMGdiag(γh)
)

+

L∑
l=1

||yl −
√
ρMGdiag(vl)mhxl||2

]
+ C1,

(9)

where C1 is a constant term. The detailed derivation can be found in
the Appendix.

C. Channel Estimation With Complex Laplace Prior in the
Angular Domain

With a large number of elements in the RIS, the Rayleigh fading
channel model may not be appropriate as the channels are more sparse
in the angular domain [2]. Therefore, we model the sparse channels as



channels that follow the Laplace distributions in the angular domain.
In particular, by applying Discrete Fourier Transform (DFT) to the
channels G and h, the obtained channels are sparse and modeled as
a random complex Laplace matrix and vector, respectively:

[Ḡ]i,j = [FMGFN ]i,j ∼ CL(0, αḠ); (10)

[h̄]i = [FNh]i ∼ CL(0, αh̄), (11)

where FN and FM are the DFT matrices of size N×N and M×M ,
respectively. Then, Ḡ and h̄ are the channels in the angular domain
where the elements are i.i.d and drawn from a complex Laplace
distribution with zero mean and scales αḠ and αh̄, respectively.
Given that F−1

N = 1
N
FH

N for any DFT matrix of size N × N , the
received signal is expressed as follows:

y =

√
ρ

MN2
FH

M ḠFH
N diag(v)FH

N h̄x+w. (12)

Rather than approximating the posterior distribution p(G,h|Y ) of
the actual channels G and h, we attempt to estimate the posterior
distribution p(Ḡ, h̄|Y ) of the channels in the angular domain.
Similar to the methodology adopted for Gaussian priors, we use the
mean-field approximation to factorize the approximated distribution
q(Ḡ, h̄|Y ) = q(Ḡ|Y ) · q(h̄|Y ). Moreover, we assume that the
approximated distributions follow complex Laplace distributions with
independent elements where q

(
[Ḡ]i,j |Y

)
∼ CL

(
[MḠ]i,j , [BḠ]i,j

)
and q

(
[h̄]i|Y

)
∼ CL

(
[mh̄]i, [bh̄]i

)
. The parameters of the approx-

imated posterior distributions MḠ, mh̄, BḠ and bh̄ are returned
by the neural networks Encoder 1 and Encoder 2. Therefore, the
expression of L1 is given by:

L1 = Eh̄∼q(h̄|Y )

[
log q(h̄|Y )

]
− Eh̄∼q(h̄|Y )

[
log p(h̄)

]
=

N∑
i=1

E[h̄]i∼q([h̄]i|Y )

[
log q([h̄]i|Y )

]
− E[h̄]i∼q([h̄]i|Y )

[
log p([h̄]i)

]
=

N∑
i=1

H
(
q
(
[h̄]i|Y

)
, p
(
[h̄]i

))
−H

(
q
(
[h̄]i|Y

))
, (14)

where H
(
q
(
[h̄]i|Y

))
is the entropy of q

(
[h̄]i|Y

)
and

H
(
q
(
[h̄]i|Y ), p

(
[h̄]i

))
is the cross entropy between q

(
[h̄]i|Y

)
and p

(
[h̄]i

)
. The entropy of the complex Laplace distribution is:

H
(
q
(
[h̄]i|Y

))
= log(2π[b]2i ) + 2. (15)

The proof can be found in the Appendix. The cross entropy between
two Laplace distributions can be obtained using Monte-Carlo method
to approximate the expectation over h̄, therefore, it is given by:

H
(
q
(
[h̄]i|Y

)
, p
(
[h̄]i

))
≈ log(2πα2

h̄) +
1

D

D∑
d=1

∣∣[̂h̄](d)i

∣∣
αh̄

, (16)

where the d-th sample is computed as [̂h̄]
(d)
i = [mh̄]i + [bh̄]i ×

CL(0, 1). Hence, the closed-form of L1 is expressed as:

L1 =
1

D

N∑
i=1

D∑
d=1

∣∣[̂h̄](d)i

∣∣
αh̄

−
N∑
i=1

log(2π[b]2i ) +N log(2πα2
h̄)− 2N.

(17)
Similarly, we derive L2 using the independence propriety of the
elements [G]i,j for the prior and the posterior:

L2 = EḠ∼q(Ḡ|Y )

[
log q(Ḡ|Y )

]
− EḠ∼q(Ḡ|Y )

[
log p(Ḡ)

]
=

1

D

M∑
i=1

N∑
j=1

D∑
d=1

∣∣ ˆ[Ḡ]
(d)
i,j

∣∣
αḠ

−
M∑
i=1

N∑
j=1

log(2π[B]2i,j)

+NM log(2πα2
Ḡ)− 2NM,

(18)

where the Monte-Carlo samples are computed as ˆ[Ḡ]
(d)
i,j = [MḠ]i,j+

[BḠ]i,j × CL(0, 1).
To compute L3, we perform the same steps as for the Gaussian

channels (Eq. 9) with the signal model defined in Eq. 12. The
covariance matrix of h̄ and the covariance matrix of the columns
of Ḡ are diagonal matrices with main diagonals denoted λ and τ ,
respectively. Theses quantities are expressed as follows:

[λ]i = 6[bh̄]
2
i ; [τ ]i =

M∑
m=1

6[BḠ]2m,i. (19)

Hence, L3 can be expressed as in Eq. 13 where C2 is a constant. A
detailed derivation can be found in the Appendix.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed joint
channel estimation method based on VI in RIS-aided SIMO system.
We consider an RIS composed of N = 64 elements and a BS
equipped with M = 4 antennas. We aim to estimate the channels
by sending L = 50 pilot symbols received at the BS. Encoder
1 and Encoder 2 are fully connected neural networks where each
neural network consists of an input layer, two 300 unit hidden layers
with Tanh activation and an output layer with two heads: the first
outputs the mean after a Tanh activation and the second uses Softmax
activation for the variance. Adam optimizer [16] is used to train the
neural networks with 0.001 as the initial learning rate.

The primary evaluation metric is the capacity of the RIS-assisted
network. Using the estimated channels that maximize the auxiliary
posteriors obtained from the neural networks, we compute the phase
shifts as θ∗ = ∠(v ⊙ h) where v is the eigenvector of the
highest eigenvalue of G, and then compute the achieved capacity. We
consider the following two baselines to compare our method with:

• Exact capacity: this is an upper bound where the capacity is
obtained using the optimal phase shifts using the true channels
G and h;

• Capacity with random phase shifts: this represents a lower
bound for our method.

Figures 2a and 2b depict the channel estimation performance with
Rayleigh channel model with σ2

G = σ2
h = 1.

In Fig. 2a, we illustrate the capacity as a function of the signal-to-
noise ratio (SNR) for different methods of the capacities. The phase
shifts derived from the estimated channels are able to achieve a
better capacity than the random selection of the RIS configuration
which validates that the neural networks were able to effectively
learn the channels. Also, we observe that, with high SNR, the
capacity gets closer to the exact capacity. In Fig. 2b, we evalu-
ate the normalized mean square error (NMSE) that is defined by
NMSE = ||Ĥ −H||2F /||H||2F and we observe that with increasing
SNR, the NMSE decreases for the UE-RIS channel while being
constant for the RIS-BS due to the large number of elements the
channel matrix is composed of.

In Fig. 3a, we evaluate the performance of the sparse channel
models where the elements of the channels in the angular domain
are sampled from complex Laplace distribution with unit scale, i.e.
αḠ = 1 and αh̄ = 1. We observe that the capacity obtained using
the proposed method is closer to the upper bound which is the
capacity with the optimal phase shifts. Moreover, Fig. 3b shows that
the NMSE decreases with the SNR. The performance with sparse
channels is better than the performance we obtained using Gaussian
models thanks to the structure of sparsity added to the models. Since
the model applied is more structured than Gaussian channels which
has a larger entropy than sparse channels. The structuring of the
model improves the performance of the estimation process.

Furthermore, we benchmark our method with the Least Square
(LS) estimator [17] in SISO setting, i.e. M = 1, with the complex
Laplace channels. The LS method estimates the cascaded channel



L3 =
1

σ2
w

L∑
l=1

[∣∣∣∣yl −
√
ρ

MN2
FH
MMḠFH

N diag(vl)F
H
N mh̄xl

∣∣∣∣2 + ρ|xl|2

MN4
· tr

(
diag(τ )FH

N diag(vl)F
H
N diag(λ)FNdiag(vl)

HFN

)
+

ρ|xl|2

MN4
tr
(
MH

ḠMḠFH
N diag(vl)F

H
N diag(λ)FNdiag(vl)

HFN

)
+
ρ|xl|2

MN4
mH

h̄ FNdiag(vl)
HFNdiag(τ )FH

N diag(vl)F
H
N mh̄

]
+ C2.

(13)
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Fig. 2: Performance of the VI-based RIS joint channel esti-
mation using complex Gaussian channels.
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Fig. 3: Performance of the VI-based RIS joint channel esti-
mation using complex Laplace channels.
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Fig. 4: Achieved capacity with complex Laplace channels and
M = 1.

H = G ·diag(h) by minimizing the mean squared error ||Y − (x⊗
IM )HV ||2F where V ∈ CN×L is the RIS configuration matrix with
the l-th column corresponding to the phase-shifts of the RIS at the
l-th pilot signal. The expression of LS estimator is given by [17]:

ĤLS =
√
ρY (V HV )−1V H . (20)

The optimal phase shifts can be obtained directly from the estimated

cascaded channel as θ∗k = −∠gk − ∠hk where gk is the channel
link between the BS and the k-th element in the RIS and hk is the
channel link between the k-th RIS and the user. Fig. 4 shows that
VI-based method outperforms the LS estimator in low SNR regime
due to taking into consideration the sparse structure of the channels
which improves the estimation of the channels. In high SNR, the
LS estimator slightly outperforms the proposed method where both
methods gets closer to the upper bound capacity.

V. CONCLUSION

We have proposed a joint channel estimation framework for RIS-
aided mmWave systems with fully passive elements. Unlike other
works on channel estimation for RIS, our work only requires an
uplink training pilot and considers the sparsity of the mmWave
channels. Based on the variational inference framework, the joint
channel estimation problem is solved by approximating the true
posteriors. We have showcased that sampling from the approximated
posteriors yields a similar capacity to the one achieved with the
true posteriors. Several future directions can be adopted based on
this work. For instance, a more physically-consistent RIS modeling,
where the elements of the RIS suffer from mutual coupling which
leads to a non-diagonal reflection matrix, can be studied. Furthermore,
the robustness of the variational inference-based method on different
channel priors and channel models should be investigated using real-
world data.
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[12] G. T. de Araújo, A. L. De Almeida, and R. Boyer, “Channel estimation
for intelligent reflecting surface assisted mimo systems: A tensor mod-
eling approach,” IEEE Journal of Selected Topics in Signal Processing,
vol. 15, no. 3, pp. 789–802, 2021.

[13] D. G. Tzikas, A. C. Likas, and N. P. Galatsanos, “The variational ap-
proximation for bayesian inference,” IEEE Signal Processing Magazine,
vol. 25, no. 6, pp. 131–146, 2008.

[14] M. J. Wainwright, M. I. Jordan et al., “Graphical models, exponential
families, and variational inference,” Foundations and Trends® in Ma-
chine Learning, vol. 1, no. 1–2, pp. 1–305, 2008.

[15] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference:
A review for statisticians,” Journal of the American statistical Associa-
tion, vol. 112, no. 518, pp. 859–877, 2017.

[16] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[17] M. Joham, H. Gao, and W. Utschick, “Estimation of channels in
systems with intelligent reflecting surfaces,” in ICASSP 2022-2022 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2022, pp. 5368–5372.

APPENDIX

In this section, we give detailed derivation of the losses under the
Gaussian and Laplace channels investigated. To compute L3 (Eq. 9)
for the Gaussian channels, we use the property Ex[(a − x)H(a −
x)] = tr(Λ) + (a−mx)

H(a−mx) where mx is the mean of x
and Λ is the covariance matrix of x to compute the expectation over
h:

L3 = Eh,G∼q(h,G|Y )

[
1

σ2
w

L∑
l=1

(
yl −

√
ρGdiag(vl)hxl

)H
(
yl −

√
ρGdiag(vl)hxl

)]
+ C1

=
1

σ2
w

L∑
l=1

EG∼q(G|Y )

[
ρ|xl|2tr

(
Gdiag(vl)diag(γh)diag(vl)

HGH)
+

(
yl −

√
ρGdiag(vl)mhxl

)H(
yl −

√
ρGdiag(vl)mhxl

)
+C1

=
1

σ2
w

L∑
l=1

EG∼q(G|Y )

[
ρ|xl|2tr

(
GHG diag(γh)

)
+

(
yl −

√
ρGdiag(vl)mhxl

)H(
yl −

√
ρGdiag(vl)mhxl

)
+C1.
(21)

We note that the covariance of h ∼ q(h|Y ) is defined by the
diagonal matrix diag(γh) since the elements of h are assumed to be
independent. Furthermore, we note that EG[GHG] = V +MH

GMG

where V = EG[(G−MG)H(G−MG)] is the covariance matrix
over the columns of G. V is a diagonal matrix because the elements
[G]i,j are assumed to be independent which makes the columns are
independent as well and the elements on the main diagonal, denoted
by τ , are given by τi =

∑M
m=1[ΓG]m,i. Therefore, L3 can be

expressed as follows:

L3 =
1

σ2
w

[
ρ||x||2tr

(
diag(τ ) diag(γh)

)
+ρ||x||2mH

h diag(τ )mh

+ ρ||x||2tr
(
MH

GMGdiag(γh)
)

+
L∑

l=1

||yl −
√
ρMGdiag(vl)mhxl||2

]
+ C1.

(22)

Moreover, we derive the entropy H
(
q(z)

)
in Eq. 23 of a complex

Laplace random variable where q(z) ∼ CL
(
m, b) with mean m and

scale b:

H
(
q(z)

)
=

∫
C
−q(z) log q(z) dz

=

∫
C
− 1

2πb2
e−

|z−m|
b log

1

2πb2
e−

|z−m|
b dz

= log(2πb2) +

∫
C

|u|
2πb3

e−
|u|
b du (u = z −m).

= log(2πb2) + 2. (23)

Finally, we derive the closed-form of L3 (Eq. 13) with complex
Laplace priors. We use the same steps as for Gaussian channels in
Eq. 21 and Eq. 22 using the signal model defined in Eq. 12. In first
step, we compute the expectation over h̄ where we denote A =√

ρ

MN2F
H
M ḠFH

N diag(vl)F
H
N xl which is a constant with respect to h̄:

L3 =
1

σ2
w

L∑
l=1

Eh̄,Ḡ∼q(h̄,Ḡ|Y )

[
(yl −Ah̄)H(yl −Ah̄)

]
=

1

σ2
w

L∑
l=1

EḠ∼q(Ḡ|Y )

[
tr
(
Adiag(λ)AH)

+ (yl −Amh̄)
H(yl −Amh̄)

]
+ C2, (24)

where C2 is a constant and λ =
[
Var

(
[h̄]1

)
, . . . ,Var

(
[h̄]N

)]
is the

covariance matrix of h̄. To compute Ḡ, we define a constant matrix
C =

√
ρ

MN2F
H
N diag(vl)F

H
N xl, i.e, A = FH

M ḠC. Hence, we get:

L3 =
1

σ2
w

L∑
l=1

EḠ∼q(Ḡ|Y )

[
tr
(
AHAdiag(λ)

)
+ (yl −Amh̄)

H(yl −Amh̄)
]
+ C2

=
1

σ2
w

L∑
l=1

EḠ∼q(Ḡ|Y )

[
M tr

(
CHḠHḠCdiag(λ)

)
+ (yl − FH

M ḠCmh̄)
H(yl − FH

M ḠCmh̄)
]
+ C2. (25)

Then we use the property EG[GHG] = V +MH
GMG where V =

EG[(G − MG)H(G − MG)] to compute the closed-form of the
expectation over Ḡ. V is a diagonal matrix with τ as the main
diagonal defined similarly as expressed for Gaussian case. Therefore,
we have:

L3 =
1

σ2
w

L∑
l=1

[
M tr

(
CHdiag(τ )Cdiag(λ)

)
+M tr

(
CHMH

ḠMḠCdiag(λ)
)

+MmH
h̄ CHdiag(τ )Cmh̄

+ (yl − FH
MMḠCmh̄)

H(yl − FH
MMḠCmh̄)

]
. (26)

Hence, we obtain the closed-form expression of L3 defined in Eq.
13 with diag(τ ) the covariance matrix of the columns of G and
diag(λ) the covariance matrix of h. The variance of a complex
Laplace random variable z ∼ CL(m, b) is Var(z) = 6b2.


